EGCG-mediated autophagy flux has a neuroprotection effect via a class III histone deacetylase in primary neuron cells
نویسندگان
چکیده
Prion diseases caused by aggregated misfolded prion protein (PrP) are transmissible neurodegenerative disorders that occur in both humans and animals. Epigallocatechin-3-gallate (EGCG) has preventive effects on prion disease; however, the mechanisms related to preventing prion diseases are unclear. We investigated whether EGCG, the main polyphenol in green tea, prevents neuron cell damage induced by the human prion protein. We also studied the neuroprotective mechanisms and proper signals mediated by EGCG. The results showed that EGCG protects the neuronal cells against human prion protein-induced damage through inhibiting Bax and cytochrome c translocation and autophagic pathways by increasing LC3-II and reducing and blocking p62 by using ATG5 small interfering (si) RNA and autophagy inhibitors. We further demonstrated that the neuroprotective effects of EGCG were exhibited by a class III histone deacetylase; sirt1 activation and the neuroprotective effects attenuated by sirt1 inactivation using sirt1 siRNA and sirtinol. We demonstrated that EGCG activated the autophagic pathways by inducing sirt1, and had protective effects against human prion protein-induced neuronal cell toxicity. These results suggest that EGCG may be a therapeutic agent for treatment of neurodegenerative disorders including prion diseases.
منابع مشابه
Autophagy Induction Rescues Toxicity Mediated by Proteasome Inhibition
The ubiquitin-proteasome and macroautophagy-lysosome pathways are major routes for intracytosolic protein degradation. In many systems, proteasome inhibition is toxic. A Nature article by Pandey et al. shows that this toxicity can be modulated by altering autophagic activity. Their tantalizing results suggest that overexpression of HDAC6 may increase flux through the autophagy pathway, thereby ...
متن کاملEffect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract
Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract Background: Lung cancer is one the leading cause of cancer-related death worldwide, with more than 1.2 million deaths each year. In addition to genetic mutations, epigenetic modif...
متن کاملHistone deacetylase inhibitor potentiated the ability of MTOR inhibitor to induce autophagic cell death in Burkitt leukemia/lymphoma
BACKGROUND Burkitt leukemia/lymphoma is a major subtype of aggressive B-cell lymphoma. Biological targeted therapies on this disease need to be further investigated and may help to improve the clinical outcome of the patients. METHODS This study examined the anti-tumor activity of the histone deacetylases (HDAC) inhibitor valproic acid (VPA) combined with the mammalian target of rapamycin (MT...
متن کاملCarcinoembryonic Antigen Expression and Resistance to Radiation-and 5-Fluorouracil-Induced Apoptosis and Autophagy
Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5- azacytidine (5-AZA) to induce CEA expression in HT29...
متن کاملNeuroprotective effect of cellular prion protein (PrPC) is related with activation of alpha7 nicotinic acetylcholine receptor (α7nAchR)-mediated autophagy flux
Activation of the alpha7 nicotinic acetylcholine receptor (α7nAchR) is regulated by prion protein (PrPC) expression and has a neuroprotective effect by modulating autophagic flux. In this study, we hypothesized that PrPC may regulate α7nAchR activation and that may prevent prion-related neurodegenerative diseases by regulating autophagic flux. PrP(106-126) treatment decreased α7nAchR expression...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015